Trimming Simulation of Forming Metal Sheets Isogeometric Models by Using NURBS Surfaces

D. Herrero-Adan (1), Rui P.R. Cardoso (2), O.B. Adetoro (1)

¹Department of Engineering Design and Mathematics, University of the West of England, BS16 1QY Bristol, UK ²Department of Mechanical, Aerospace and Civil Engineering, Brunel University London, UB8 3PH Uxbridge, London, UK

01.- MOTIVATION 02.- GENERAL VIEW 03.- TRIMMING CURVE DEFINITION 04.- STIFFNESS MATRIX AND FORCES 05.- EXAMPLES 06.- POTENTIAL IMPROVEMENTS

01.- MOTIVATION

01.- MOTIVATION 02.- GENERAL VIEW

- 03.- TRIMMING CURVE DEFINITION
- 04.- STIFFNESS MATRIX AND FORCES
- 05.- EXAMPLES
- 06.- POTENTIAL IMPROVEMENTS

01.- MOTIVATION 02.- GENERAL VIEW 03 - TRIMMING CURVE

03.- TRIMMING CURVE DEFINITION

- 04.- STIFFNESS MATRIX AND FORCES
- 05.- EXAMPLES
- 06.- POTENTIAL IMPROVEMENTS

Surfaces S and T intersect in physical space but are defined in different parameter spaces

03.1.- Strategy

- 03.2.- T surface requirements
- 03.3.- Row of intersection points
- 03.4.- Curve fitting

03.5.- Definition of remaining surface

I .- Calculate a row of S-T intersection points (iterations required for each intersection point calculation)

II .- Fit a curve to the row of intersection points but in **S parameter space**

03.1.- Strategy

03.2.- T surface requirements

- 03.3.- Row of intersection points
- 03.4.- Curve fitting
- 03.5.- Definition of remaining surface

03.1.- Strategy

03.2.- T surface requirements

03.3.- Row of intersection points

03.4.- Curve fitting

03.5.- Definition of remaining surface

Physical coordinates to search next intersection point

S & T parameter coordinates to search next intersection point P1 S T

03.1.- Strategy

03.2.- T surface requirements

03.3.- Row of intersection points

03.4.- Curve fitting

03.5.- Definition of remaining surface

03.1.- Strategy

- 03.2.- T surface requirements
- 03.3.- Row of intersection points

03.4.- Curve fitting

03.5.- Definition of remaining surface

[2] Piegl L, Tiller W. The NURBS Book. Berlin. Springer-Verlag, (1996).

Direction of curve is given by cross product of surfaces S $d\vec{c} = \vec{S} \times \vec{T}$ and T normal vectors 03.1.- Strategy

- 03.2.- T surface requirements
- 03.3.- Row of intersection points
- 03.4.- Curve fitting
- **03.5.-** Definition of remaining surface

01.- MOTIVATION 02.- GENERAL VIEW 03.- TRIMMING CURVE DEFINITION 04.- STIFFNESS MATRIX AND FORCES 05.- EXAMPLES 06.- POTENTIAL IMPROVEMENTS

04.- STIFFNESS MATRIX AND FORCES

[1] Kim HJ, Seo YD, Youn SK. *Isogeometric analysis for trimmed CAD surfaces*. Comput. Methods Appl. Mech. Engrg. 198 (2009) 2982–2995

Then the control points displacement are calculated and afterwards the stresses

03.- TRIMMING CURVE DEFINITION 04.- STIFFNESS MATRIX AND FORCES 05.- EXAMPLES 06.- POTENTIAL IMPROVEMENTS

01.- MOTIVATION 02.- GENERAL VIEW

04.- EXAMPLES

Trimming examples:

- slotted pipe:

- end-trimmed pipe:

04.- EXAMPLES

Trimming and displacement calculation example:

- Slotted washer quarter :

06.- POTENTIAL IMPROVEMENTS

- 05.- EXAMPLES
- 03.- TRIMMING CURVE DEFINITION 04.- STIFFNESS MATRIX AND FORCES
- 02.- GENERAL VIEW
- 01.- MOTIVATION

06.- POTENTIAL IMPROVEMENTS

Algorithm to select the initial searching points

Allow trimming surface to be closed (simulate holes)

Non-derivable trimming surfaces

06.- POTENTIAL IMPROVEMENTS

Remove trimming curve dependency on step (step length selection)

THANK YOU FOR

YOURATTENTION

References

[1] Hughes TJR, Cottrell JA, Bazilevs Y. *Isogeometric analysis: CAD finite elements NURBS exact geometry and mesh refinement*. Comput. Methods Appl. Mech. Engrg. 194 (2005) 4135–4195.

[2] Cottrell JA, Hughes TJR, Bazilevs Y. *Isogeometric Analysis, Toward Integration of CAD and FEA*. Wiley, (2009).

[3] Xiao LH, Yuan DH, Xiang JZ, Liu JG, Zhou YC. *Residual stress in the cylindrical drawing cup of SUS304 stainless steel evaluated by split-ring test*. Acta Mech. Sin. (2016) 32(1):125–134

[4] Kim HJ, Seo YD, Youn SK. *Isogeometric analysis for trimmed CAD surfaces*. Comput. Methods Appl. Mech. Engrg. 198 (2009) 2982–2995

[5] Piegl L, Tiller W. The NURBS Book. Berlin. Springer-Verlag, (1996).

D. Herrero-Adan, Rui P.R. Cardoso, O.B. Adetoro

Daniel.Herreroadan@uwe.ac.uk