

Health impacts of city policies to reduce climate change in 2 Chinese and 5 European cities: a comparison of differing health impacts and mitigation priorities through transport, building and energy policy scenarios

Prof Clive Sabel
Project Principal Investigator

School of Geographical Sciences University of Bristol c.sabel@bristol.ac.uk

Sharing international experience on urban planning for promoting health and environmental sustainability Workshop, LSHTM Jun 2016

Project Aim

FP7 Project: 2011-2015

€ 3.5 Million

17 Partners, in Europe and China. University of Bristol is the PI.

Aim:

- To examine real city policies and future scenarios to investigate the health impact of these climate-change reduction policies.
- Working with 5 cities in Europe, 2 in China. Paired arrangement between each city and a local university.
- Investigating 3 policy areas transport, housing and energy.
- www.urgenche.eu
 - See policy Briefings
 - Traffic; buildings; energy; wellbeing

Population change 1990-2015

Beijing Air Pollution: Real-time Air Quality Index (AQI)

 BEIJING
 SHANGHAI
 GUANGZHOU
 CHENGDU
 HONGKONG
 NANJING
 SHENZHEN
 MORE CITIES

 北京
 上海
 广州
 成都
 香港
 南京
 深圳

Mon 19/1 2015

AQI		Air Pollution Level	Health Implications			
0 - 5	60	Good	Air quality is considered satisfactory, and air pollution poses little or no risk			
51 -	100	Moderate	Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people who are unusually sensitive to air pollution.			
101-	-150	Unhealthy for Sensitive Groups	Members of sensitive groups may experience health effects. The general public is not likely to be affected.			
151-	-200	Unhealthy	Everyone may begin to experience health effects; members of sensitive groups may experience more serious health effects			
201-	-300	Very Unhealthy	Health warnings of emergency conditions. The entire population is more likely to be affected.			
300-	+	Hazardous	Health alert: everyone may experience more serious health effects			

PM – health risks

Source: US EPA

- World Health Organization (WHO) sets a maximum safe limit of exposure over a 24-hour period: 25 PM_{2.5} particles in every cubic metre of air.
- PM_{2.5} Fragments of unburned fuel that are small enough to reach the lungs and, in the smallest cases, to cross into the bloodstream

Asia Pacific

Air Pollution Linked to 1.2 Million Premature Deaths in China

Alv Song/Reuters

Shanghai in January. Researchers said the toll from China's pollution meant the loss of 25 million healthy years in 2010.

By EDWARD WONG

Published: April 1, 2013 | 📮 40 Comments

BEIJING — Outdoor air pollution contributed to 1.2 million premature deaths in China in 2010, nearly 40 percent of the global total, according to a new summary of data from a scientific study on leading causes of death worldwide.

f	FACEBOOK
¥	TWITTER
Q+	GOOGLE+
	SAVE

The Partnership

Participant no. *	Participant organisation name	Participant abbreviation	Country	
1 coordinator	University of Exeter	UExeter	United Kingdom	
2	City of Suzhou	CSuzhou	China	
3	City of Xi'an	CXi'an	China	
4	City of Basel	CBasle	Switzerland	
5	City of Kuopio	CKuopio	Finland	
6	City of Rotterdam	CRott	The Netherlands	
7	City of Stuttgart	CStutt	Germany	
8	Peking University	UPek	China	
9	Nanjing University	UNanj	China	
10	Centre for Research and Technology Hellas	CERTH	Greece	
11	Institute of Occupational Medicine	IOM	United Kingdom	
12	Suomen Ymparistokeskus	SYKE	Finland	
13	Terveyden ja Hyvinvoinnin Laitos	THL	Finland	
14	Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk	TNO	The Netherlands	
15	Universitaet Stuttgart	UStutt	Germany	
16	Swiss Tropical Institute	STI	Switzerland	
17	World Health Organization Regional Office for Europe	WHO	Denmark/Germany/Italy	

Project Team

Rotterdam, Netherlands "Europe's largest port" CECCCCCCC CCCCCCCCC CCCCCCCCCC CCCC * Freight transport, petro chemistry and a large port-industrial area : Gas, oil, wind, some solar, building coal

plant

Climate change threats identified:

Flooding, heat island

GHG reduction policies*:

- improved cycle network
- Reuse of waste heat from industry, carbon capture & storage

Urgenche Climate-Change City Policies

coal, gas Climate change threats identified: >4% decline in industry and enterprises by

GHG reduction policies:

2050

Energy efficiency in new & existing homes

- R Electric cars, fewer vehicles,
- Shut polluting industries, reduce emissions from industry increased use of gas and solar

Key:

Population (100 000s) € Euros per capita (1000s)

Industries

Energy supply & energy policies

Buildings policies

☐ Transport policies

Thessalonik, i Greece "Greece's second major city" EEEEEEEEE EEEEEEEEE * Port, machinery, textiles, steel, oil, cement, flour, petrochemical, liquor, services Lignite, gas Climate change threats identified: Heat stress, forest fires **GHG reduction policies: Insulation** new metro, electric cars

City of Thessaloniki case-study Transport Policies considered

	Economic Drive	Policies Considered						
Scenario	Gross domestic product	METRO Construction	Usage of Electric Cars	Technologies Penetration in Passenger Cars,				
2010 Baseline	GDP 2010(*)	NO	NO	Gasoline passenger cars: 97.6% (**) Diesel cars: 1.4% Hybrid Cars: 1%				
2020 BAU	GDP 2020(*)	NO	NO	(**)	Gasoline passenger cars: 91% Diesel cars: 1% Hybrid Cars: 8%			
2020 CO2	GDP 2020(*)	YES	YES	(***)	Gasoline passenger cars: 68% Diesel cars: 22% Hybrid Cars: 8% Electric Cars: 2%			

(*): GDP analysis, Eurobank Research

(**): Data from SIBYL Model, http://www.emisia.com/sibyl/

(***): Expert Elicitation

Data Used

- Building Footprint and Building Height
- Thessaloniki GIS Road Geometry
- Hourly Variation in traffic flow and velocity
- Hourly variation in traffic composition per vehicle class
- Population Data per building block

- Metereological and Pollution Data (Mikra, Kalamaria, AUTH, Panorama, Sindos, Kordelio, Neoxorouda Stations)
- Urban Background Pollution (Eptapyrgio and Neoxorouda Station)

PM₁₀ Scenarios

Annual number of deaths attributed to PM₁₀

Health Impact in the city

Annual number of deaths attributed to PM_{10} and NO_2 and leukemia lifetime expected cases due to Benzene

	PM10			NO2			Benzene		
Municipality	2010	BAU	CO ₂	2010	BAU	CO ₂	2010	BAU	CO ₂
Thessaloniki	404.1	418.6	348.6	104.1	124.1	97.7	8.9	8.3	4.0
Sykeai	40.4	40.8	34.7	10.4	12.7	10.4	0.9	0.9	0.5
Agiou Paylou	8.6	8.8	7.3	2.3	2.9	2.3	0.2	0.2	0.1
Eukarpia	6.6	7.1	6.6	1.4	1.5	1.2	0.0	0.0	0.0
Ambelokipi	44.6	48.1	39.0	10.9	13.3	10.5	1.0	0.9	0.5
Kalamaria	108.0	108.2	94.6	26.5	31.2	25.2	2.1	2.0	1.0

- 775 Questionnaires administered in Aug 2013
- Wellbeing measure WHO-5 Wellbeing scale
 - "I have felt cheerful and in good spirits",
 - "I have felt calm and relaxed"
 - "I have felt active and vigorous"
 - "I woke up feeling fresh and rested", and
 - "My daily life has been filled with things that interest me"
- Statistical analysis Generalized estimation equation modelling to reveal external conditions associated with wellbeing

Climate Change Mitigation and Adaption Policies examined in Suzhou

Policy Category	Specific Measures	External Conditions Affected		
	Increase of tertiary industry,	Employment rate, quality and salary [27]		
	high-tech industry	Air quality and related health [2,28]		
	Reduce energy intensity from industry	Air quality and related health [2,28]		
		Indoor air quality [29]		
	Increase use of clean household energy in the building	The use of artificial ventilation system lil the air conditioner and kitchen range hoods [30]		
		Housing quality [31]		
Mitigation policy		Transport mode [32]		
	Support public and active transport	Air quality [33,34]		
		Physical activity and health [35–37]		
		Transport mode [26,32]		
	Restrict private car population	Air quality [33,34]		
		Noise pollution [33,34]		
	I	Air quality [33,34]		
	Increase awareness of low-carbon life	Environmental opinions [38]		
	Increase green spaces	Quantity/quality of green space [39]		
Adaptation policy	Increase resilience of population	Relationships with other people and governance structures [40]		

urgenche Climate Change Wellbeing Pathways

Lessons learned from Chinese and EU case studies

China

Data access limited

- Few GIS files: road structure and buildings: hence no noise modelling
- No traffic data (current) and scenario (future)
- No primary health data available

(resolved via "open source")

AQ monitoring: regional/high-rise buildings

 AQ at urban/regional background (14 m height) and not at ground level (traffic)

Collaboration

 Limited interaction with city partners on results – Need top-down buy-in from City Mayor

EU

Data access complex

- Much specific local data but difficult to apply in general method
- Political sensitive to analyse other scenarios

(close collaboration with city-partner)

AQ monitoring: local/exposure

 AQ at urban, regional and traffic locations at ground level

Collaboration

 More interaction with city-partners on results but results politically difficult in some instances

urgenche Conclusions: Europe and China

- Different scale of problems (size of cities and metropolitan areas, growth rates)
- Different levels of exposure (China 10x air pollution exposure)
- Different Political systems, different drivers
 - Economic growth v Sustainable liveable cities
 - In hindsight, in China, needed top down connections (City Mayor)

Selected Project Papers

Sabel C E, Hiscock R, Asikainen A, Bi, J, Depledge M, van den Elshout S, Freiedrich R, Huang, G, Hurley F, Jantunen M, Karakitsios S P, Keuken M, Kingkham, S, Kontoroupis P, Kuenzli N, Liu M, Martuzzi M, Morton K, Mudu P, Niittynen M, Perez L, Sarigiannis D, Stahl-Timmins W, Tobollik M, Tuomisto J and Willers S (2016) **Public Health impacts of city policies to reduce climate change: findings from the URGENCHE EU-China project**, Environmental Health, 15 (Suppl 1):25.

Thomas, F, Sabel C E, Morton K, Hiscock, R, Depledge M (2014) Extended impacts of climate change on health and wellbeing, Environmental Science and Policy, 44, 271-278.

Keuken, M, Jonkers, S, Verhagen, H, Perez, L, Trueb, S, Okkerse, W-J, Liu, J, Pan, X, Zheng, L, Wang, H, Xu, R & Sabel C E (2014) Impact on air quality of measures to reduce CO2 emissions from road traffic in Basel, Rotterdam, Xi'an and Suzhou, Atmospheric Environment, 98, 434-441.

Hiscock R, Mudu P, Braubach M, Martuzzi M, Perez L, Sabel C E (2014) Wellbeing Impacts of City Policies for Reducing Greenhouse Gas Emissions, International journal of environmental research and public health, 11 (12), p. 12312-12345.

Willers S M, Marcel Jonker, Lisette Klok, Menno P. Keuken, Jennie Odink, Sef van den Elshout, **Sabel C E,** Johan P. Mackenbach, Alex Burdorf (2016) **High resolution exposure modelling of heat and air pollution and the impact on mortality**, <u>Environment International</u>, 89-90, 102-109.

Perez L., Trüeb S., Cowie H., Keuken M.P., Mudu P., Ragettli MS., Sarigiannis D.A., Tobollik M., Tuomisto J., Vienneau D., **Sabel C. E.**, Künzli N (2015) **Transport-related measures to mitigate climate change in Basel, Switzerland: a health effectiveness comparison study**, Environment International, 85, 111-119.

谢谢 Thank you

